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Abstract. We study the maximal immediate extensions of valued fields whose
residue fields are perfect and whose value groups are divisible by the residue

characteristic if it is positive. In the case where there is such an extension

which has finite transcendence degree we derive strong properties of the field
and the extension and show that the maximal immediate extension is unique

up to isomorphism, although these fields need not be Kaplansky fields. If the
maximal immediate extension is an algebraic extension, we show that it is

equal to the perfect hull and the completion of the field.

1. Introduction

In this paper, we denote a valued field by (K, v), its value group by vK, and its
residue field by Kv. When we talk of a valued field extension (L|K, v) we mean
that (L, v) is a valued field, L|K a field extension, and K is endowed with the
restriction of v. For the basic facts about valued fields, we refer the reader to
[5, 6, 15, 18, 21, 22].

A henselian field is a valued field which satisfies Hensel’s Lemma, or equiv-
alently, admits a unique extension of its valuation to its algebraic closure. Note
that every algebraic extension of a henselian field is again henselian, with respect
to the unique extension of the valuation. A henselization of a valued field (K, v)
is an algebraic extension which is henselian and minimal in the sense that it can
be embedded in every other henselian extension field of (K, v). Henselizations exist
for every valued field (K, v), and they are unique up to valuation preserving iso-
morphism over K. Therefore, we will speak of “the henselization of (K, v)” and
denote it by (Kh, v).

An extension (L|K, v) is called immediate if the canonical embeddings of vK in
vL and of Kv in Lv are onto, in other words, value group and residue field remain
unchanged. Henselizations are immediate separable-algebraic extensions. A valued
field is called maximal if it does not admit any nontrivial immediate extensions.
It follows that a maximal immediate extension of a valued field is a maximal field.
It was shown by W. Krull in [9] that every valued field (K, v) admits a maximal
immediate extension (M,v) (the proof was later simplified by K. A. H. Gravett in
[7]). However, the maximal immediate extension M does not need to be unique up
to isomorphism. This was shown by I. Kaplansky in [8]. He proved also that under
a certain condition, called “hypothesis A”, uniqueness holds (see below). A valued
field (K, v) satisfying hypothesis A is called a Kaplansky field. By Theorem 1 of
[23], hypothesis A is equivalent to the conjunction of the following three conditions,
where p denotes the characteristic charKv of the residue field:
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(K1) if p > 0 then the value group vK is p-divisible,

(K2) the residue field Kv is perfect,

(K3) the residue field Kv admits no finite separable extension of degree divisible
by p.

A more elementary proof for the equivalence was later given by Kaplansky himself,
based on an idea of D. Leep, and is documented in [10]. Note that conditions (K2)
and (K3) can be combined into the condition that the residue field Kv admits no
finite extensions of degree divisible by its characteristic. But splitting this up has
a purpose; see the paper [16] which presents an alternative proof of the following
theorem:

Theorem 1.1 (Kaplansky, Theorem 5 of [8]). If (K, v) is a Kaplansky field, then
the maximal immediate extension of (K, v) is unique up to valuation preserving
isomorphism over K.

Note further that every valued field of residue characteristic 0 is a Kaplansky field.

We will study properties of valued fields satisfying the following conditions:

(1) (K, v) is a henselian field such that (K1) and (K2) hold.

This includes all Kaplansky fields and in particular, all valued fields of residue
characteristic 0. We will not assume that (K, v) satisfies (K3).

Theorem 1.2. In addition to the assumptions (1), suppose that (M,v) is maximal,
of finite transcendence degree over K and v is nontrivial on M . Take L|K to be
the maximal separable-algebraic subextension of M |K. Then we have:

a) K is a separably tame field,

b) L|K is a finite tame extension,

c) the perfect hull of K is contained in the completion of K,

d) vM/vK and Mv|Kv are finite.

If in addition, M |K is algebraic, then we also have:

e) M is equal to the perfect hull of L and to the completion of L,

f) the perfect hull of K is equal to the completion of K and is the unique maximal
immediate extension of K.

Note that a field with the trivial valuation is maximal. Together with the above
theorem this yields the following:
Corollary 1.3. In addition to the assumptions (1), suppose that (M,v) is a max-
imal immediate extension of (K, v) such that M |K is algebraic.

a) If charK = 0, then M = K, so (K, v) is maximal.

b) Otherwise, M is equal to the perfect hull of K and to the completion of K.

Note that if in the situation of the above corollary the extensionM |K is separable-
algebraic, then regardless of the characteristic of K we obtain that (K, v) is a max-
imal field. The next corollary shows that this holds also if we do not require M |K
to be immediate.

Corollary 1.4. Take a valued field (K, v) satisfying the assumptions (1) with v
nontrivial on K, and a separable-algebraic extension M of K. If (M, v) is maximal,
then (K, v) is maximal and a tame field, and (M |K, v) is a finite tame extension.
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The conclusion of this corollary remains true if we replace “separable-algebraic
extension” by “finite extension”. A valued field (K, v) is called maximal-by-finite
if it is not maximal, but a finite extension (M,v) of (K, v) is a maximal field.

Theorem 1.5. Take a valued field (K, v) satisfying the assumptions (1), and a
finite extension M of K. If (M,v) is maximal, then (K, v) is maximal and a tame
field, and (M |K, v) is a tame extension. Hence, a valued field which satisfies the
assumptions (1) cannot be maximal-by-finite.

This theorem constitutes a partial answer, for the case that (K, v) satisfies (K1)
and (K2), to a question we have been asked by K. Struyve and K. Kedlaya.

Maximal-by-finite fields are of importance in connection with decomposition
problems for modules over valuation domains. For this purpose, the characteriza-
tion of non-henselian maximal-by-finite fields has already been given by P. Vamos
in [19]. His result can be formulated as follows:

Theorem 1.6. Suppose that (K, v) is maximal-by-finite, but not henselian. Then
K is formally real, Kv is algebraically closed (and hence v is not compatible with
any ordering on K), v admits two distinct immediate extensions to K(

√
−1) and

with both of them, K(
√
−1) is maximal. Exactly one of the following two cases

holds:

i) K is real closed, K(
√
−1) is algebraically closed and the completion of (K, v).

ii) v is a composition v = w ◦ w with both w and w nontrivial, (K,w) is maximal
and case i) holds for (Kw,w); in this case, (K, v) is complete.

These two theorems leave open the case of henselian fields that violate (K1)
or (K2). Not much seems to be known in this case. M. Nagata ([17, Appendix,
Example (E3.1), pp. 206-207]) gave an example of a discrete valued field which
is not maximal but has a finite purely inseparable maximal immediate extension.
This field has infinite p-degree and it can be shown that this fact is necessary. But
there appear to be no results in the literature for non-discrete henselian fields that
violate (K1) or (K2). However, there are related results that show the influence of
the p-degree on the behaviour of maximal immediate extensions: see Theorems 1.2,
1.5 and 1.6 of [4].

In the situation of Corollary 1.3, the maximal immediate extension of (K, v) is
always unique up to valuation preserving isomorphism over K. This result can be
generalized to the case of finite transcendence degree:

Theorem 1.7. Assume that the assumptions (1) are satisfied. If the field admits
a maximal immediate extension of finite transcendence degree, then all maximal
immediate extensions of (K, v) are isomorphic over K, as valued fields. If (K, v)
admits an immediate extension of infinite transcendence degree, then all maximal
immediate extensions of (K, v) are of infinite transcendence degree over K.

Theorem 1.7 shows that there are valued fields that are not maximal and not
Kaplansky fields but admit unique maximal immediate extensions. To produce
examples of such fields, take any valued field (K0, v) that is not maximal and
satisfies (K1) and (K2), but not (K3). Take any maximal immediate extension
(M, v) of (K0, v) and denote the transcendence basis of M |K0 by T . Choose any
finite subset T0 of T . Then the henselization of (K0(T \T0), v) does not satisfy (K3),
but by Theorem 1.7, its maximal immediate extension is unique up to valuation
preserving isomorphism.
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The question under which additional assumptions the converse of Theorem 1.1
holds was studied in [20] and in [16]. Proposition 8.5 in the latter paper provides
such an assumption, but it is not satisfied by the valued fields we have constructed
since by part a) of Theorem 1.2 they are separably tame.

If (L, v) is a finite extension of (K, v) such that the extension of v from K to L
is unique, then the Lemma of Ostrowski (see [22], Chapter VI, §12, Corollary to
Theorem 25) says that

[L : K] = pν(vL : vK)[Lv : Kv](2)

for a nonnegative integer ν and p the characteristic exponent of Kv, that is,
p = charKv if it is positive and p = 1 otherwise. The factor d(L|K, v) := pν is
called the defect of the extension (L|K, v). If it is nontrivial, that is, if ν > 0, then
(L|K, v) is called a defect extension. Otherwise, (L|K, v) is called a defectless
extension.

The following theorem relates the problem of the existence of nontrivial separable-
algebraic defect extensions of (K, v) with the structure of the maximal immediate
extensions of the field.

Theorem 1.8. In addition to the assumptions (1), suppose that at least one of the
following cases holds:

a) (K, v) admits a finite separable-algebraic defect extension,

b) the perfect hull of K is not contained in the completion of K.

Then every maximal immediate extension of (K, v) is of infinite transcendence de-
gree over K.

Moreover, condition b) implies condition a).

Open question: What can be said about a valued field that admits a maximal
immediate extension of finite transcendence degree but violates (K1) or (K2)?

This paper is in part based on the thesis [2] of the first author.

2. Preliminaries

By charK we denote the characteristic of K. In slight abuse of notation, we will
denote the perfect hull of a field K by K1/p∞ even if in the respective context, p
denotes a prime other than charK. If charK = 0, then K1/p∞ = K even if K is
valued with charKv = p > 0.

The algebraic closure of a field K will be denoted by K̃, and its separable-
algebraic closure by Ksep.

2.1. Tame and defect extensions. Take a finite extension (L|K, v) of valued
fields. If v1 = v, . . . , vg are the distinct extensions of the valuation v of K to the
field L, then L|K satisfies the fundamental inequality (cf. Corollary 17.5 of [5]):

[L : K] ≥
g∑
i=1

(viL : vK)[Lvi : Kv].(3)

A useful consequence of the above inequality is the following fact.

Lemma 2.1. If L is a finite extension of a valued field (K, v), then the exten-
sion of v from K to L is unique if and only if L|K is linearly disjoint from some
(equivalently, every) henselization of (K, v).
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Proof. By Corollary 7.48 of [15], we have that

[L : K] =

g∑
i=1

[Lh(vi) : Kh(vi)] = [Kh(vi).L : Kh(vi)],(4)

where v1, . . . , vg are the distinct extensions of v to L and Lh(vi), Kh(vi) are henseliza-

tions of L and K with respect to an extension of vi to L̃ = K̃. If L|K is not linearly
disjoint from Kh(vi)|K for some i ≤ g, then [Kh(vi).L : Kh(vi)] < [L : K]. Thus
g ≥ 2 and the extension of v from K to L is not unique.

On the other hand, if L|K is linearly disjoint from some henselization Kh of
K, then [L : K] = [Kh.L : Kh] and from equation (4) we deduce that v admits a
unique extension from K to L. �

Assume now that the extension of the valuation v from K to L is unique. Then
inequality (3) is of the form

[L : K] ≥ (vL : vK)[Lv : Kv],(5)

and the “missing factor” on the right hand side of the inequality is determined
by the Lemma of Ostrowski, i.e., equation (2). Fix an extension of v from K to

K̃ and denote it again by v. Then from Lemma 2.1 it follows that [L : K] =
[L.Kh : Kh] = [Lh : Kh]. Since (Kh|K, v) and (Lh|L, v) are immediate extensions,
(vL : vK)[Lv : Kv] = (vLh : vKh)[Lhv : Khv]. Together with the definition of the
defect, this yields that

d(L|K, v) = d(Lh|Kh, v).(6)

It follows that if (L|K, v) is a defect extension, then also (Lh|Kh, v) has nontrivial
defect. Therefore we will restrict our studies of the defect to the case of henselian
fields.

An algebraic extension (L|K, v) of a henselian field (K, v) is called tame if every
finite subextension F |K of L|K satisfies the following conditions:

(T1) if charKv = p > 0, then the ramification index (vF : vK) is prime to p,

(T2) the residue field extension Fv|Kv is separable,

(T3) (F |K, v) is a defectless extension.

Assume that (K, v) is a henselian field with charKv = 0. Then the first two
conditions of the above definition are trivially satisfied and the third one follows
immediately from the Lemma of Ostrowski. Hence every algebraic extension of
such a field is tame.

A henselian field (K, v) is said to be a tame field if (K̃|K, v) is a tame extension,
and a separably tame field if (Ksep|K, v) is a tame extension. From the definition
of a tame extension it follows that (K, v) is tame if and only if

(TF1) if charKv = p > 0, then the value group vK is p-divisible,

(TF2) the residue field Kv is perfect,

(TF3) (K, v) is a defectless field.

Note that by (TF1) and (TF2), the perfect hull of a tame field is an immediate
extension, and by (TF3), this extension must be trivial. This shows that every
tame field is perfect.
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Take a valued field (K, v), fix an extension of v to Ksep and call it again v. The
fixed field of the closed subgroup

Gr := {σ ∈ Gal (Ksep|K) | v(σa− a) > va for all a ∈ OKsep \ {0}}

of Gal(Ksep|K) (cf. Corollary 20.6 of [5]) is called the absolute ramification field
of (K, v) and is denoted by (K, v)r or Kr if v is fixed. Ramification theory states

that Kr = K̃ if charKv = 0, and Ksep|Kr is a p-extension if charKv = p > 0,
i.e., a Galois extension with a pro-p-group as its Galois group (cf. Lemma 2.7 of
[11]). Moreover, for any algebraic extension L of K we have that

Lr = Kr.L(7)

(cf. Theorem 4.10 of [13]). From Section 4 of [13], equation (4.5), it follows that
Kh ⊆ Kr. In particular, together with equation (7) it shows that

(Kh)r = Kr.(8)

If (K, v) is henselian, then Kr is a Galois extension of K, and it is also the unique
maximal tame extension of (K, v) (see Theorem 20.10 of [5] and Proposition 4.1
of [16]). This yields that every tame extension of valued fields is separable-algebraic.

Furthermore, we obtain that (K, v) is a tame field if and only if Kr = K̃.

Lemma 2.2. Take a normal extension N of a henselian field (K, v) and set L =
N ∩Kr. Then vN/vL is a p-group, Nv|Lv is purely inseparable and (L|K, v) is a
tame extension.

Proof. Since L|K is a subextension of the tame extension Kr|K, it is also tame.
The assertions on value group and residue field follow from general ramification
theory. �

We now turn to a result that will be crucial for the proof of our main theorems.
In order to prove it, we need the following lemma.

Lemma 2.3. The residue field of a henselian valuation on an ordered field has
characteristic 0.

Proof. If the residue field of the henselian field (K, v) has characteristic p > 0, then
the reduction of the polynomial X2 − X + p under v is the polynomial v is the
polynomial X2 − X which has the two distinct roots 0 and 1. Hence by Hensel’s
Lemma, X2 −X + p splits in K, which is impossible in any ordered field. �

Theorem 2.4. Assume that (L|K, v) is a finite extension of henselian fields. If
(L, v) is a tame field, then also (K, v) is a tame field and the extension (L|K, v) is
defectless.

Proof. Since Lr = L.Kr, we know that Lr|Kr is a finite extension. Since (L, v)
is assumed to be a tame field, we have that Lr is equal to the algebraic closure
L̃ = K̃. By Artin-Schreier Theory, Kr is either algebraically closed or real closed.
The latter is not possible. Indeed, since v is henselian on Kr, it would have residue
characteristic 0 by the previous lemma. But then, (Kr, v) would be a tame field
and thus algebraically closed. We conclude that Kr is algebraically closed, showing
that (K, v) is a tame field. By definition, it follows that the finite extension (L|K, v)
is tame and hence defectless. �
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For the conclusion of this section we list two more useful results. The following
is Lemma 4.15 of [14]:

Lemma 2.5. Assume that (L, v) is a tame field and K is a relatively algebraically
closed subfield of L. If in addition Lv|Kv is an algebraic extension, then (K, v) is
also a tame field.

One of the ingredients in the proof of the previous lemma is the following fact,
which is proved by use of Hensel’s Lemma (see, e.g., Lemma 2.4 of [4]).

Lemma 2.6. Assume (L, v) to be henselian and K to be relatively separable-
algebraically closed in L. Then Kv is relatively separable-algebraically closed in
Lv. If in addition Lv|Kv is algebraic, then the torsion subgroup of vL/vK is a
p-group, where p is the characteristic exponent of Kv.

2.2. Defect extensions of prime degree. In the study of defect extensions,
reduction to the case of defect extensions of prime degree is a crucial tool. This
reduction is achieved thanks to the following important property of the absolute
ramification field, which is deduced via Galois correspondence from the fact that
Gr is a pro-p-group. For the proof, see Lemma 2.9 of [11].

Lemma 2.7. Let (K, v) be a valued field extension and take p to be the charac-
teristic exponent of Kv. Then every finite extension of Kr is a tower of normal
extensions of degree p. If L|K is a finite extension, then there is already a finite
tame extension N of Kh such that L.N |N is such a tower.

The defect is preserved under liftings through tame extensions (see Proposi-
tion 2.8 of [11]):

Proposition 2.8. Take a henselian field (K, v) and a tame extension N of K.
Then for any finite extension L|K,

d(L|K, v) = d(L.N |N, v).

Take a valued field (K, v) of positive residue characteristic p. Fix an extension of
v to Ksep. Denote by Kh and Kr the henselization and the absolute ramification
field of K with respect to this extension. Take any finite extension (L|K, v) such
that the extension of the valuation v from K to L is unique. Then equation (6)
together with Proposition 2.8 and equation (8) give that

d(L|K, v) = d(L.Kh|Kh, v) = d(L.Kr|Kr, v).

On the other hand, Lemma 2.7 shows that L.Kr|Kr is a tower of normal extensions
of degree p. Thus, if L|K is separable, then L.Kr|Kr is a tower of Galois extensions
of degree p and if (L|K, v) is a defect extension, then so are some of these extensions.
This shows that Galois defect extensions of prime degree play a crucial role in the
investigation of defect extensions.

If charK = p, then every Galois extension of degree p is an Artin-Schreier
extension, i.e., an extension generated by a root ϑ of a polynomial Xp−X−a with
a ∈ K. In this case, ϑ is called an Artin-Schreier generator of the extension.
On the other hand, if a polynomial f = Xp − X − a ∈ K[X] has no roots in K,
then it is irreducible over the field. If ϑ is a root of f , then the other roots are of
the form ϑ+ 1, . . . , ϑ+ p− 1. Hence K(ϑ)|K is a Galois extension.
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Note that an Artin-Schreier extension (K(ϑ)|K, v) of henselian fields has non-
trivial defect if and only if it is immediate. If this holds, we will speak of an
Artin-Schreier defect extension. A classification of Artin-Schreier defect extensions
(introduced in [11]) distinguishes two types of Artin-Schreier defect extensions, ac-
cording to their connection with purely inseparable extensions. One type of these
extensions can be derived from purely inseparable extensions of degree p by a cer-
tain deformation of purely inseparable polynomials into Artin-Schreier polynomials,
while the other cannot. The next proposition indicates when such a construction
of Artin-Schreier defect extensions is possible; for the proof, see Proposition 4.4
of [11].

Proposition 2.9. Assume that (L, v) admits an immediate purely inseparable ex-
tension if degree p which does not lie in the completion of the field. Then (L, v)
admits an Artin-Schreier defect extension.

Note that if the assumptions on the value group and residue field of (K, v) of (1)
hold, then every purely inseparable extension of (K, v) is immediate. Thus if K1/p

is not contained in the completion of K, the above proposition yields that (K, v)
admits an Artin-Schreier defect extension. However, in the case of p-divisible value
group and perfect residue field, we can say much more:

Theorem 2.10. Assume that (K, v) is a valued field of positive characteristic p
with p-divisible value group and perfect residue field. If there is a purely inseparable
extension of (K, v) which does not lie in the completion of the field, then K admits
an infinite tower of Artin-Schreier defect extensions.

For the proof see [3], Theorem 1.4.

2.3. Immediate extensions and maximal fields. The henselization and the
completion of a valued field are immediate extensions. This together with Theo-
rem 31.21 of [21] gives the following important properties of maximal fields.

Theorem 2.11. Every maximal field is henselian, complete and defectless.

Corollary 2.12. Take a valued field (K, v) such that vK p-divisible if the charac-
teristic of Kv is p > 0, and Kv is perfect. Assume that (M |K, v) is an extension
such that (M, v) is maximal with vM/vK a torsion group and Mv|Kv algebraic.
Then (M, v) is a tame field and hence perfect.

Proof. Since vK is p-divisible and vM/vK is a torsion group, also vM is p-divisible.
Since Kv is perfect and Mv|Kv is algebraic, also Mv is perfect. As every maximal
field is defectless by Theorem 2.11, (M, v) is a tame field. �

For the proof of the next result, see Theorem 31.22 of [21].

Theorem 2.13. Every finite extension of a maximal field is again a maximal field,
with respect to the unique extension of the valuation.

We are going to show that a field which satisfies the assumptions of (1) cannot
be maximal-by-finite. To this end, we need the following result, which is Lemma
2.5 of [11].

Lemma 2.14. Take an immediate extension (E|K, v), an extension of v from E

to Ẽ, and a finite defectless subextension (L|K, v) of (Ẽ|K, v). If v admits a unique
extension from K to L, then L|K is linearly disjoint from E|K and the extension
(L.E|L, v) is immediate.
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Lemma 2.15. Assume that (K, v) is a henselian field which is not maximal, and
(M |K, v) is a finite extension such that (M, v) is maximal. Then (M |K, v) is a
defect extension, and neither (M,v) nor (K, v) is a tame field.

Proof. If the extension (M |K, v) were defectless, then Lemma 2.14 would imply
that for every nontrivial immediate extension (E|K, v) the extension (E.M |M,v)
would be also nontrivial and immediate, contradicting our assumption that (M,v)
is a maximal field. As every finite extension of a tame field is defectless, this shows
that (K, v) cannot be a tame field. Theorem 2.4 shows that also (M,v) cannot be
a tame field. �

Proof of Theorem 1.5. If (M,v) is maximal and a finite extension of (K, v), then
it follows from Corollary 2.12 that (M,v) is a tame field. Since (K, v) is assumed to
be finite, Lemma 2.15 shows that (K, v) must be maximal. Hence it is a defectless
field by Theorem 2.11. As it also satisfies (K1) and (K2) by assumption, it is a
tame field, so (M |K, v) is a tame extension. �

In what follows we will make repeated use of the main theorem of [4]:

Theorem 2.16. Take a valued field extension (L|K, v) of finite transcendence de-
gree ≥ 0, with v nontrivial on L. Assume that one of the following four cases
holds:

valuation-transcendental case: vL/vK is not a torsion group, or Lv|Kv is tran-
scendental;

value-algebraic case: vL/vK contains elements of arbitrarily high order, or there
is a subgroup Γ ⊆ vL containing vK such that Γ/vK is an infinite torsion group
and the order of each of its elements is prime to the characteristic exponent of Kv;

residue-algebraic case: Lv contains elements of arbitrarily high degree over Kv;

separable-algebraic case: L|K contains a separable-algebraic subextension L0|K
such that within some henselization of L, the corresponding extension Lh0 |Kh is
infinite.

Then each maximal immediate extension of (L, v) has infinite transcendence degree
over L. If the cofinality of vL is countable (which for instance is the case if vL
contains an element γ such that γ > vK), then already the completion of (L, v) has
infinite transcendence degree over L.

The next lemma constitutes the main application of this theorem in the present
paper.

Lemma 2.17. Assume that (K, v) is a henselian field which admits an extension
(M, v) of finite transcendence degree such that (M,v) is a maximal field and v is
nontrivial on M . Then the maximal separable-algebraic subextension of M |K is a
finite extension of K.

Proof. Applying Theorem 2.16 with L = M , its separable-algebraic case shows that
(M |K, v) cannot admit an infinite separable-algebraic subextension, since M is its
own maximal immediate extension. �

Corollary 2.18. Take a separable-algebraic extension (M |K, v) of henselian fields
such that (M, v) is a maximal field and v is nontrivial on M . Then the extension
is finite and either (K, v) is maximal or (M |K, v) is a nontrivial defect extension.
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Proof. The fact that M |K is a finite extension follows directly from the previous
lemma.

Suppose that K is not a maximal field. Then it is maximal-by-finite by the
assumption on (M,v). Therefore, Lemma 2.15 yields that the extension (M |K, v)
has nontrivial defect. �

A valued field (K, v) is called algebraically maximal if it does not admit
any nontrivial immediate algebraic extension, and separable-algebraically max-
imal if it does not admit any nontrivial immediate separable-algebraic extension.
Since henselizations are immediate separable-algebraic extensions, every separable-
algebraically maximal field is henselian. In the proof of the following lemma we
will make use of the theory of pseudo Cauchy sequences as presented in [8].

Lemma 2.19. Assume that (K, v) is algebraically maximal. If (K(x), v) is an
immediate transcendental extension of (K, v), then (K(x), v) can be embedded over
K in every maximal immediate extension of (K, v).

Proof. Since (K(x), v) is an immediate extension of (K, v), Theorem 1 of [8] yields
that x is a pseudo limit of a pseudo Cauchy sequence (aν)ν<λ in (K, v) without
a pseudo limit in (K, v). Since (K, v) admits no nontrivial immediate algebraic
extensions, it follows from Theorem 3 of [8] that (aν)ν<λ is of transcendental type.
Take any maximal immediate extension (M,w) of (K, v). Then (aν)ν<λ admits a
pseudo limit y in (M,w) by Theorem 4 of [8]. From Theorem 2 of [8] we know that
sending x to y induces a valuation preserving isomorphism over K from (K(x), v)
to (K(y), w), and thus an embedding of (K(x), v) in (M,w). �

2.4. Some facts about completions. By (Kc, v) we will denote the completion
of a valued field (K, v). It is unique up to valuation preserving isomorphism. The
following is Lemma 6.25 of [15].

Lemma 2.20. Take a finite extension (L|K, v) of valued fields. Then there is a
unique extension of v from Kc to L.Kc which coincides with v on L. With this
extension, Lc = Kc.L.

For the proof of the next lemma we will need the following result which is The-
orem 2 of [12].

Theorem 2.21. Take a valued field (K, v) and the henselization Kh of K with
respect to some extension of the valuation v to the algebraic closure of K. Take an
element b algebraic over K. If there is an element a ∈ Kh such that

v(a− b) > v(a− c) for every c ∈ K,

then K(b) is not linearly disjoint from Kh over K. In particular, K(b) is not purely
inseparable.

Lemma 2.22. Take a valued field (K, v) and an element η purely inseparable over
K. If η does not lie in the completion of K then it also does not lie in the completion
of the henselization of K.

Proof. Assume that η does not lie in the completion of (K, v). Then there is an
element γ ∈ vK such that v(η − c) < γ for every c ∈ K.
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Suppose that η lies in the completion of the henselization Kh of K. Then there
is a ∈ Kh such that v(η − a) > γ. It follows that for every c ∈ K

v(η − a) > γ > v(η − c) = v(a− c).
But the above theorem shows that this is not possible, as η is purely inseparable
over K. �

3. Proofs of the main results

Throughout this section, we assume that (K, v) is a valued field satis-
fying the assumptions (1).

Proposition 3.1. Assume that (K, v) admits a maximal immediate extension
(M, v) of finite transcendence degree. Then K is relatively separable-algebraically
closed in M and the relative algebraic closure of K in M is equal to the perfect hull
of K.

Proof. If v is trivial on M , then M = K, hence the assertion holds.
Suppose now that v is not trivial on M . As we have already shown in Corol-

lary 2.12, (M,v) is a tame field. Denote by L the relative algebraic closure of K in
M . Then Lemma 2.5 shows that also (L, v) is a tame field.

We have that K1/p∞ ⊆ M1/p∞ . As vM = vK is p-divisible if charK = p > 0,
and Mv = Kv is perfect, (M1/p∞ |M, v) is an immediate extension. Since M is
maximal, it follows that M1/p∞ = M and thus K1/p∞ ⊆ L. By Lemma 2.17,
the separable-algebraic extension L|K1/p∞ must be finite. Since (L, v) is tame, by
Theorem 2.4 we obtain that (L|K1/p∞ , v) is defectless. Since it is an immediate
extension of henselian fields, it follows that L = K1/p∞ . This proves that K is
relatively separable-algebraically closed in M and that L = K1/p∞ . �

Proof of Theorem 1.7. Assume that (M,v) is a maximal immediate extension of
(K, v) of finite transcendence degree. Take (N,w) to be another maximal immediate
extension of (K, v). It suffices to show that (M, v) can be embedded in (N,w) over
K, as a valued field. Indeed, if ϕ is the embedding, then (ϕ(M), w) is a maximal
immediate extension of (K, v). Since the extension (N |K,w) is immediate, also the
subextension (N |ϕ(M), w) is immediate and we obtain that ϕ(M) = N . Thus, the
fields (M, v) and (N,w) are isomorphic over K.

Consider the family of all subextensions E|K of M |K admitting a valuation
preserving embedding in N over K. By Zorn’s Lemma, there is a maximal such
extension F |K; denote its embedding by σ. We wish to show that F = M .

Since M,N as maximal fields are henselian, M contains the henselization Fh

of F and the embedding extends uniquely to an embedding τ : Fh → N . By the
maximality of σ we have that Fh = F , that is, F is henselian.

Take L to be the relative algebraic closure of F in M . Proposition 3.1 yields
that L = F 1/p∞ . Assume that charK = p. By Corollary 2.12, (N,w) is perfect.
Hence, σ can be extended in a unique way to an embedding τ of L in N . From the
maximality of σ it follows that L = F , that is, F is relatively algebraically closed
in M . Again by Corollary 2.12, (M,v) is tame. Therefore, Lemma 2.5 implies that
also (F, v) is a tame field.

Since F is relatively algebraically closed in M , either F = M or the extension
M |F is transcendental. Suppose the latter holds. We identify (F, v) with its iso-
morphic image (σ(F ), w) in (N,w). Take an element x ∈M \F . Then (F (x)|F, v)
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is an immediate transcendental extension. By Lemma 2.19, the field F (x) can be
embedded in (N,w) over F , a contradiction to the maximality of F . Thus we obtain
the required equality M = F . This proves the first assertion of our theorem.

The second is an immediate consequence of the first. �

Corollary 3.2. If (K, v) admits a maximal immediate extension of finite transcen-
dence degree, then it is separable-algebraically maximal.

Proof. Take an immediate separable-algebraic extension (E|K, v). Then (E, v) is
contained in some maximal immediate extension (N,w) of (K, v). Theorem 1.7
implies that N |K is of finite transcendence degree, hence by Proposition 3.1 the
field K is relatively separable-algebraically closed in N . Thus the extension E|K
is trivial and consequently, (K, v) admits no proper immediate separable-algebraic
extensions. �

For the proof of Theorem 1.2, we will need the following lemma.

Lemma 3.3. Assume that (K, v) admits a finite Galois defect extension (E, v).
Then every maximal immediate extension of (E, v) is of infinite transcendence de-
gree over E.

Proof. Set L = E ∩Kr. Lemma 2.2 yields that (L|K, v) is a finite tame extension.
Furthermore, vE/vL is a p-group and the residue field extension Ev|Lv is purely
inseparable. Since vL is p-divisible and Lv is perfect, as this holds already for
the value group and the residue field of (K, v), the group vE/vL and the exten-
sion Ev|Lv are trivial. Thus (E|L, v) is an immediate extension. From this and
Proposition 2.8 it follows that

[E : L] = d(E|L, v) = d(E|K, v) > 1.

This shows that the immediate separable-algebraic extension (E|L, v) is nontrivial.
Applying Corollary 3.2 to the field (L, v) in place of (K, v), we obtain that every
maximal immediate extension of (L, v) is of infinite transcendence degree.

Since (E|L, v) is immediate, each maximal immediate extension of (E, v) is also a
maximal immediate extension of (L, v); since E|L is algebraic, it must be of infinite
transcendence degree too. �

Proof of Theorem 1.2. Note first that by Lemma 2.17, L|K is a finite exten-
sion. Take a finite Galois extension E of K containing L. Then (M.E, v), where v is
the unique extension of the valuation of M to M.E, is again maximal. Furthermore,
from the valuation-transcendental case of Theorem 2.16 it follows that vM/vK is
a torsion group and the residue field extension Mv|Kv is algebraic. Hence, vM is
p-divisible and Mv is perfect, as it holds already for the value group and the residue
field of (K, v). Applying Corollary 2.12 to the extension M.E|M , we obtain that
M.E is a tame field.

Moreover, since L is relatively-separable algebraically closed in M , the separable-
algebraic closure Lsep of L is linearly disjoint form M . Since E|L is a subextension
of Lsep|L, it follows that Lsep = Esep is linearly disjoint from M.E over E. Hence, E
is relatively separable-algebraically closed in M.E. Moreover, vE is p-divisible and
Ev is perfect. Therefore, it follows from Lemma 2.6 that (M.E, v) is an immediate
extension of (E, v). As (M.E, v) is a maximal field, it is a maximal immediate
extension of (E, v).
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Suppose that (E|K, v) were a defect extension. Then by Lemma 3.3, every
maximal immediate extension of (E, v) would be of infinite transcendence degree.
On the other hand, (M.E, v) is a maximal immediate extension of (E, v) of finite
transcendence degree, a contradiction.

We thus obtain that every finite Galois extension of K containing L is defectless.
This implies in particular that every finite separable-algebraic extension of K is
defectless. Since vK is p-divisible and Kv is perfect, this yields that every finite
separable-algebraic extension of K is tame. In particular, (L|K, v) is a finite tame
extension. This proves assertions a) and b).

As we have seen, (K, v) admits no separable-algebraic defect extensions. More-
over, by the assumption on value group and residue field of (K, v), every purely
inseparable extension of (K, v) is immediate. Therefore Theorem 2.10 yields that
every purely inseparable extension of (K, v) lies in the completion Kc of the field
(this is trivial when charK = 0). We have proved assertion c).

Suppose that vM/vK is infinite. Then it is either not a torsion group, or it is an
infinite torsion group with all exponents prime to the residue characteristic expo-
nent since vK is p-divisible if charKv = p > 0. Thus, the valuation-transcendental
or the value-algebraic case of Theorem 2.16 applies. Suppose that Mv/Kv is infi-
nite. Then the extension is either transcendental, or it is separable-algebraic since
Kv is perfect. Thus, the valuation-transcendental or the residue-algebraic case of
Theorem 2.16 applies. In both cases, each maximal immediate extension of (M, v)
has infinite transcendence degree over M , which is impossible because (M,v) is
itself maximal. This proves assertion d).

Assume from now on that the extension M |K is algebraic. Then M |L is a purely
inseparable extension. Moreover, vL is p-divisible and Lv is perfect, as this holds
already for the value group and the residue field of (K, v). Hence the extension M |L
is immediate. Together with the fact that (M,v) is a maximal field, this yields that
M is a maximal immediate extension of L. From Proposition 3.1 it follows that M
is the perfect hull of L.

Before we show the last assertion of part e), we prove the assertion of f). Take
a maximal immediate extension (N, v) of (K, v). As N is henselian, v admits
a unique extension to the field N.L. Denote this extension again by v. Since the
extension (L|K, v) is defectless, Lemma 2.14 implies that (N.L|L, v) is an immediate
extension. Furthermore, N.L is a finite extension of N . Thus, by Theorem 2.13
we obtain that N.L is a maximal immediate extension of L. By Theorem 1.7
we obtain that N.L is isomorphic to M over L. Thus in particular, N.L|L is an
algebraic extension. Hence the same holds for N |K. This means that (K, v) admits
a maximal immediate extension algebraic over the field. From Proposition 3.1 it
follows that N is equal to the perfect hull of K. Moreover, K1/p∞ is contained in
the completion Kc of K, by part c) of our theorem. Since Kc|K is an immediate
extension, this yields that N = K1/p∞ = Kc. As the completion (K, v) is unique
up to isomorphism, this proves assertion f).

It remains to show that the perfect hull of L is equal to the completion of L.
Since L|K is a finite extension, Lemma 2.20 together with assertion f) yield that

L1/p∞ = K1/p∞ .L = Kc.L = Lc.

Therefore, assertion e) holds. �
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Proof of Corollary 1.4. Assume that (M, v) is a maximal field. Then by
part b) of Theorem 1.2 we obtain that (M |K, v) is a finite tame extension. From
Corollary 2.12 it follows that (M,v) is a tame field. Hence, by Theorem 2.4 also
(K, v) is a tame field. It remains to show that (K, v) is a maximal field, but this
follows directly from Lemma 2.15. �

Proof of Theorem 1.8. If a) holds, then the assertion of the theorem follows
from part a) of Theorem 1.2, as separably-tame fields admit no separable-algebraic
defect extensions.

Assume that b) holds. Then the assertion of the theorem is a consequence of
part c) of Theorem 1.2. Furthermore, by Theorem 2.10 it admits also separable-
algebraic defect extensions, hence the condition of a) is satisfied. �

Assume that (K, v) satisfies the assumptions of part b) of Theorem 1.8. Then
we can give an explicit construction of an immediate extension of (K, v) of infinite
transcendence degree. Indeed, if the perfect hull of (K, v) is not contained in the
completion of K, then Theorem 2.10 yields that (K, v) admits a separable-algebraic
extension L|K which is an infinite tower of Artin-Schreier defect extensions. Now
by the separable-algebraic case of Theorem 2.16 we obtain that every maximal
immediate extension of (L, v) is of infinite transcendence degree. As every Artin-
Schreier defect extension is immediate, we deduce that (L|K, v) is immediate and
any maximal immediate extension of L is also a maximal immediate extension of K.
This proves the assertion of Theorem 1.8. Furthermore, the proof of Theorem 2.10
presents a possible construction of the tower of Artin-Schreier defect extensions
(L|K, v) (see the proof of Theorem 1.4, [3]). Also the proof of Theorem 2.16 shows
how to construct the immediate extension of infinite transcendence degree of (L, v)
(cf. Theorem 1.1 of [4]). This gives us a construction of an immediate extension of
(K, v) of infinite transcendence degree.

Remark 3.4. Note that if (L|K, v) is a finite separable extension, then the perfect
hull of K is contained in the completion Kc of K if and only if the same holds for
L. Indeed, if K1/p∞ ⊆ Kc, then by Lemma 2.20 we have that

L1/p∞ = K1/p∞ .L ⊆ Kc.L = Lc.

Conversely, assume that L1/p∞ ⊆ Lc. Then in particular, K1/p∞ ⊆ Lc. By
Lemma 2.20 Lc = Kc.L. Hence, Lc|Kc is a separable algebraic extension, as
L|K is. We thus deduce that K1/p∞ ⊆ Kc.

This shows that we can replace condition b) of Theorem 1.8 by the equivalent
condition:

2’) for some finite separable extension L of K, the perfect hull of L is not contained
in the completion of L.

Remark 3.5. Note that in Theorem 1.7 we can omit the assumption that (K, v) is
a henselian field. This follows from the fact that the henselization of a valued field
is unique up to isomorphism and that every maximal immediate extension contains
a henselization.

We show that also in Theorem 1.8 we can omit the assumption that (K, v) is a
henselian field. Condition a) should then read as follows:

a’) There is a finite separable-algebraic extension (F |K, v) such that the valuation
v extends in a unique way from K to F and (F |K, v) has nontrivial defect.
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Take a maximal immediate extension (M, v) of (K, v). ThenM contains a henseliza-
tion Kh of K. Assume that condition a’) is satisfied and denote by Fh the henseliza-
tion of F with respect to the unique extension of the valuation of M to M.F . Then
equation (6) shows that also the extension Fh|Kh has nontrivial defect. Thus from
Theorem 1.8 we deduce that every maximal immediate extension of Kh is of infinite
transcendence degree. Hence also M |K has infinite transcendence degree.

Now take a valued field (K, v) such that the perfect hull of K is not contained in
the completion of K. Take a maximal immediate extension (M,v) of (K, v). Then
M contains a henselization Kh of K, the completion Kc of K and the completion
(Kh)c of Kh. Since by assumption K admits a purely inseparable extension which
is not contained in Kc, Lemma 2.22 yields that the extension is also not contained
in (Kh)c. Thus Kh is a henselian field which satisfies the assumptions of Theo-
rem 1.8. We therefore obtain that every maximal immediate extension of Kh is of
infinite transcendence degree. Since (M,v) is a maximal immediate extension of
Kh, we deduce that also M |K has infinite transcendence degree. Moreover, from
Theorem 2.10 it follows that (K, v) satisfies condition a’).
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